关于PHP浮点数精度损失问题
2015-03-12 PHP 885
$f = 0.57;
echo intval($f * 100); //56
结果可能有点出乎你的意外,PHP遵循IEEE 754双精度: 浮点数, 以64位的双精度, 采用1位符号位(E), 11指数位(Q), 52位尾数(M)表示(一共64位). 符号位:最高位表示
$f = 0.57; echo intval($f * 100); //56
结果可能有点出乎你的意外,PHP遵循IEEE 754双精度: 浮点数, 以64位的双精度, 采用1位符号位(E), 11指数位(Q), 52位尾数(M)表示(一共64位). 符号位:最高位表示数据的正负,0表示正数,1表示负数。 指数位:表示数据以2为底的幂,指数采用偏移码表示 尾数:表示数据小数点后的有效数字.
再来看看小数用二进制怎么表示:
乘2取整,顺序排列,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分,但是像0.57这样的小数像这样一直乘下去,小数部分不可能为0.有效位的小数用二进制表示却是无穷的。
0.57的二进制表示基本上(52位)是: 0010001111010111000010100011110101110000101000111101
如果只有52位的话,0.57 =》 0.56999999999999995
不难看出上面意外的结果了吧。
很赞哦! (0)
文章评论
-
-
-
0条评论